\S Spaces Forms

There are 3 "model geometries" in 20:

($k \equiv-1$)
Hyperbolic
$\left(1 H^{2} . g_{\text {hyp }}\right.$)

Poincare dirk model

Q: Can we classify the "model geometries" in higher dimensions? le constant curvature spaces

Cartan Theorem: $S^{n}, \mathbb{R}^{n}, \mathbb{H}^{n}$ are the only simply connected, complete Riem. n-manifolds with constant sectional curvatures.

The key idea to the proof is a lemma due to Cartan-Ambrose which says that the Riens. curvature tensor R determines the Riem. metric of locally.

Notation for Cartan-Ambrose Lemma:
$\left(M^{n} \cdot g\right)=$ complete Riem. $m f d$ of same $\operatorname{dim}=n$ $\left(\tilde{M}^{n} \cdot \tilde{g}\right)$
Fix $p \in M, \tilde{p} \in \tilde{M}$ and a linear isometry $i: T_{p} M \rightarrow T_{\tilde{p}} \tilde{M}$

Let $V \subseteq M$ be a $n b d$ of P in M st the geodesic nomad (centered at p)
Coordinate system r is well-defined in V
Define: $f: V \rightarrow \tilde{M}$ by $f(q):=\exp _{\tilde{p}} \cdot i \cdot \exp _{p}^{-1}(q)$
Let $\gamma:[0, t] \rightarrow M$ be geodesic from p to q parallel transports a boy $\boldsymbol{\gamma}, \boldsymbol{\gamma}$
$\tilde{\gamma}:[0, t] \rightarrow M$ be geodesic fromm \tilde{p} to \tilde{q}
Define: $\phi_{t}: T_{g} M \rightarrow T_{\tilde{q}} \tilde{M}$ by $\phi_{t}(v):=\tilde{P}_{t} \cdot i \cdot P_{t}^{-1}(v)$

Cartan-Ambrose Lemma: Under the notations above:
If $\forall q \in V, \forall x, y, u, v \in T_{q} M$.

$$
R(x, y, u, v)=\tilde{R}\left(\phi_{t}(x), \phi_{t}(y), \phi_{t}(u), \phi_{t}(v)\right) .
$$

THEN, $f: V \rightarrow f(V)$ is a local isometry.
"Sketch of Proof": Fix $q \in V$, and let $\gamma:[0, l] \rightarrow M$ p.b.a.l.
Fix $V \in T_{q} M$. By the choice of V, q is NOT conjugate to p
$\Rightarrow \exists$ Jawhifield $V(t)$ along $\gamma(t)$ st $V(0)=0 . V(l)=v$ Choose a parallel O.N.B. $\left\{e_{1}, \ldots e_{n}^{\prime \prime^{\prime}}\right\}$ along γ sit $e_{n}=\gamma^{\prime}$ white: $\quad V(t)=\sum_{j=1}^{n} \alpha_{j}(t) e_{j}(t)$
Jacobi eq n $\Rightarrow \quad \alpha_{j}^{\prime \prime}+\sum_{i=1}^{n} R\left(e_{n}, e_{i}, e_{n}, e_{j}\right) \alpha_{i}=0 \quad$ for $j=1, \ldots, n$
Define: $\vec{V}(t):=\phi_{t}(V(t)) \quad \forall t \in[0, \ell]$

$$
\tilde{e}_{j}(t):=\phi_{t}\left(e_{j}(t)\right) \quad \text { O.N.B. parallel along } \tilde{\gamma}
$$

Note: $\quad \tilde{V}(t)=\sum_{j=1}^{n} \alpha_{j}(t) \tilde{e_{j}}(t)$
By hypothesis, $R\left(e_{n}, e_{i}, e_{n}, e_{j}\right)=\widetilde{R}\left(\tilde{e_{n}}, \tilde{e_{i}}, \tilde{e_{n}}, \tilde{e_{j}}\right)$.

$$
\Rightarrow \quad \alpha_{j}^{\prime \prime}+\sum_{i=1}^{n} \widetilde{R}\left(\tilde{e}_{n}, \tilde{e}_{i}, \tilde{e}_{n}, \tilde{e}_{j}\right) \alpha_{i}=0 \quad \text { for } j=1, \ldots, n
$$

So. $\tilde{V}(t)$ is a Jawbi field along $\tilde{\gamma}$ with $\tilde{V}(0)=0$.

Since P_{t}, \tilde{P}_{t} are isometries, we have $\|\tilde{V}(\ell)\|=\|V(\ell)\|$ Finally, one checks that $\tilde{V}(l)=d f_{q}(v)$, ie. $d f_{q}$ is isometry. (Ex.)

Cartan's Thun: Let $\left(M^{n}, g\right)$ be a complete Riem. manifold.
Suppose (M^{n}, g) has constant sectional curvature $K_{0} \in\{1,0,-1\}$.
THEN, the universal cover (\tilde{M}^{n}, \tilde{g}) is isometric to either $S^{n}\left(K_{0}=1\right), \mathbb{R}^{n}\left(K_{0}=0\right)$ or $\mathbb{H}^{n}\left(K_{0}=-1\right)$.
"Proof": Case 1: $K_{0}=-1$ or $K_{0}=0$
Fix $p \in \mathbb{H}^{n}, \tilde{p} \in \tilde{M}$ and isometry $i: T_{p} \mathbb{H}^{n} \rightarrow T_{\bar{p}} \tilde{M}$

Cartan-Ambrose Lemme $\Rightarrow f$ local isometry $\stackrel{\text { fatties }}{\Rightarrow} f$ global isometry
Case 2: $\quad K_{0}=1$ Fix $p \in \mathbb{H}^{n}, \tilde{p} \in \tilde{M}$ and isometry $i: T_{p} \mathbb{H}^{n} \rightarrow T_{\bar{p}} \tilde{M}$

